terça-feira, 30 de outubro de 2018

Einstein e a teoria do movimento browniano NO SISTEMA CATEGORIAL GRACELI.


Matriz categorial de Graceli.


T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         Dl


Tipos, níveis, potenciais, tempo de ação [categorias de Graceli], temperatura, eletricidade, magnetismo, radioatividade, luminescências, dinâmicas, estruturas, fenômenos, transições de fenômenos e estados físicos, e estados de energias, dimensões fenomênicas de Graceli.
trans-intermecânica de TUNELAMENTO no sistema categorial de Graceli.

EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]

p it = potentials of interactions and transformations.
Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.

h e = quantum index and speed of light.

[pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..


EPG = GRACELI POTENTIAL STATUS.

[pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]

, [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG]..



X

T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         Dl


X
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         Dl


X
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         Dl


X
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         Dl





Einstein adotou desde cedo uma visão realista, objetiva, sobre a existência de átomos e moléculas. Na sua tese de doutoramento Einstein analisa o fenômeno de difusão das partículas do soluto numa solução diluída (partículas de açúcar em água) com o objetivo de obter estimativas para o número de Avogadro e o diâmetro das partículas do soluto. As propriedades termodinâmicas das soluções diluídas já tinham sido suficientemente estabelecidas (sabia-se, por exemplo, que a pressão osmótica, exercida pela solução sobre uma membrana semi-permeável, impedindo a passagem do soluto, comporta-se de acordo com a lei dos gases perfeitos). Na parte inicial da tese, Einstein faz um cálculo hidrodinâmico, com base nas equações de Navier-Stokes para o escoamento de um fluido incompressível, a fim de obter a viscosidade efetiva do fluido na presença do soluto. No modelo adotado, as moléculas do soluto são esferas rígidas, não interagentes, e bem maiores do que as moléculas do solvente. O resultado final, que mais tarde precisou ser ligeiramente corrigido, é dado por
onde h* é a viscosidade efetiva, h é a viscosidade do solvente puro, e f é a fração do volume total ocupado pelas partículas do soluto [6]. Utilizando a densidade de massa, r, e a massa molar do soluto, m, que são grandezas experimentalmente acessíveis, temos
onde a é o raio das partículas (esféricas) do soluto. Já que as viscosidades podem ser medidas, aparecem como incógnitas o raio a das partículas do soluto e o número de Avogadro NA. Na segunda parte da tese, Einstein recorre a um argumento engenhoso, deduzido de forma alternativa no artigo sobre o movimento browniano, a fim de obter uma segunda relação entre a e NA. Na seção 2, discutimos esse problema. O resultado final é uma das expressões conhecidas de Einstein, precursora dos teoremas de flutuação-dissipação, relacionando o coeficiente de difusão D com a temperatura e a viscosidade do fluido,
A partir das expressões (2) e (3), com os dados disponíveis na época para soluções de açúcar em água, Einstein obteve NA = 2,1 × 1023 (partículas por mol) e a = 9,9 × 10-8 cm, concluindo que "o valor encontrado para NAapresenta uma concordância satisfatória, em ordem de magnitude, com os valores encontrados para essa grandeza por outros métodos". Mais tarde, com dados experimentais um pouco melhores, o valor do número de Avogadro foi modificado para NA = 3,3 × 1023. A realidade de átomos e moléculas foi sendo imposta por resultados desse tipo. Graças à concordância de valores obtidos por pesquisadores diferentes, com estimativas independentes, baseadas em técnicas e idéias distintas, as resistências ao atomismo foram aos poucos sendo vencidas [3].
O trabalho sobre as leis que governam o movimento browniano e a sua brilhante confirmação experimental por Perrin e colaboradores alguns anos depois foram decisivos para a aceitação da realidade de átomos e moléculas [7]. Em trabalhos anteriores a 1905 [8],[9], Einstein já tinha utilizado a definição estatística de entropia, que ele chamava princípio de Boltzmann , para estudar as flutuações de energia de um sistema em contato térmico com outro sistema muito maior (com um reservatório térmico, na linguagem moderna). A energia do sistema de interesse flutua em torno de um valor médio, que pode ser identificado com a energia interna termodinâmica. Sem conhecimento dos trabalhos anteriores de Gibbs [10], Einstein mostrou que o valor médio do desvio quadrático da energia depende do número de partículas microscópicas; no caso de um fluido, o desvio relativo torna-se absurdamente pequeno, sem nenhuma chance de ser observado. No movimento browniano, no entanto, Einstein vislumbrava uma oportunidade de observar flutuações dessa mesma natureza. Nesse fenômeno, partículas macroscopicamente pequenas em suspensão, mas muito maiores que as moléculas do fluido puro, estão descrevendo um movimento incessante, errático, de vai-e-vem, que podia ser observado (e poderia ser medido) nos ultramicroscópios da época. Esse comportamento foi caracterizado pelo botânico Robert Brown, na primeira metade do século XIX, que observou o movimento incessante de partículas de pólen dissolvidas em água. O mesmo tipo de movimento também foi observado em partículas inorgânicas de cinza, convencendo Brown sobre a natureza física do fenômeno. Ao contrário das flutuações invisíveis das moléculas de um gás, no movimento browniano tornam-se visíveis no microscópio as flutuações das partículas bem maiores em suspensão, incessantemente bombardeadas pelas partículas microscopicamente menores do solvente fluido.
A teoria de Einstein do movimento browniano é baseada na semelhança entre o comportamento de soluções e suspensões diluídas, na relação entre o coeficiente de difusão e a viscosidade, que já havia sido obtida na tese de doutoramento, e numa dedução probabilística da equação da difusão, antecipando-se às teorias modernas de cadeias markovianas. Através desse raciocínio probabilístico, que vamos discutir na seção 2, Einstein obtém a celebrada expressão do percurso quadrático médio no movimento browniano,
em que áx2ñ e o tempo t podem ser medidos (conhecendo-se Th e a, é possível determinar o número de Avogadro NA). Foi importante que Einstein indicasse claramente a grandeza que deveria ser medida (isto é, distâncias ao invés de velocidades). As experiências de Perrin e colaboradores consistiram em registrar a observação, no microscópio, do movimento de um conjunto grande de partículas em suspensão, cuja forma esférica podia ser muito bem controlada. Nas suspensões utilizadas, essas experiências verificaram o comportamento ideal da pressão osmótica e a lei de força de Stokes, ingredientes importantes da teoria de Einstein. Além disso, produziram nova estimativa para o número de Avogadro. O sucesso dos trabalhos de Perin foi notável [7]. Os valores obtidos e a concordância com a teoria de Einstein representaram contribuição significativa para a aceitação geral do atomismo.
Uma equação diferencial para o movimento browniano foi escrita por Langevin [11] em 1908, recuperando a relação de Einstein e fazendo contacto com trabalhos paralelos de Smoluchowski. A moderna equação diferencial estocástica associada à "dinâmica de Langevin" tem sido fartamente utilizada a fim de introduzir um comportamento dinâmico no contexto de sistemas estatísticos clássicos, como o modelo de Ising, que não possuem nenhuma dinâmica intrínseca [12][13]. A dinâmica de Langevin é a possibilidade mais simples na presença de flutuações estocásticas. Há um número crescente de aplicações contemporâneas, em vários problemas de física, química ou biologia, em que as flutuações desempenham papel relevante. Um mecanismo de Langevin, na presença de potencial adequado, foi proposto para explicar o funcionamento dos motores moleculares, responsáveis pelo metabolismo biológico [14].
Na seção 2 nós apresentamos os principais ingredientes da teoria de Einstein sobre o movimento browniano. Procuramos manter fidelidade às idéias engenhosas dos trabalhos originais. Na seção 3 apresentamos a teoria de Langevin, "infiniment plus simple", de fato muito mais simples e direta, e que por isso mesmo acabou sendo preferida pelos textos de física estatística. As conclusões são registradas na seção 4. Torna-se irônico que durante boa parte do século XX a interpretação estatística da física clássica, cabalmente confirmada pela teoria do movimento browniano, tenha ficado em segundo plano frente ao sucesso da física estatística quântica. Nesse início de século, no entanto, as aplicações (por exemplo, na física da "matéria mole" ou no domínio das nanotecnologias) devem dar vida nova à teoria do movimento browniano.

Paradoxo Termodinâmico e a Mecânica Estatística Quântica no sistema categorial Graceli.


Matriz categorial de Graceli.


T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         Dl


Tipos, níveis, potenciais, tempo de ação [categorias de Graceli], temperatura, eletricidade, magnetismo, radioatividade, luminescências, dinâmicas, estruturas, fenômenos, transições de fenômenos e estados físicos, e estados de energias, dimensões fenomênicas de Graceli.
trans-intermecânica de TUNELAMENTO no sistema categorial de Graceli.

EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]

p it = potentials of interactions and transformations.
Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.

h e = quantum index and speed of light.

[pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..


EPG = GRACELI POTENTIAL STATUS.

[pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]

, [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG]..



X

T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         Dl

paradoxo termodinâmico categorial Graceli.
Sejam dois fluidos colocados em dois recipientes separados por uma barreira. Se os dois fluidos são idênticos e a barreira é removida, haverá mudança na entropia; se não são idênticos TAMBÉM haverá mudança na entropia.

pois, o tempo é outro, e logo, a estrutura e os fenômenos saõ outros. pois, uma mesma partícula muda incessantemente, e tem infinitas mudanças com variáveis diferentes dentro dela.


Paradoxo Termodinâmico e a Mecânica Estatística Quântica. .
Em 1902, o físico norte-americano Josiah Williard Gibbs (1839-1903) publicou o livro intitulado Elementary Principles in Statistical Mechanics (Yale University Press), no qual retomou o trabalho do físico austríaco Ludwig Edward Boltzmann (1844-1906) de 1877 (vide verbete nesta série), porém, em vez de tratar um gás como constituído de moléculas em constante colisão, como fizera Boltzmann, Gibbs partiu do espaço de fase T, ocupado pelo gás, e trabalhou com uma função de distribuição (r) de pontos nesse espaço. Num certo instante de tempo t, cada ponto no espaço de fase corresponde a uma cópia do sistema estudado, que está sujeito a determinadas condições macroscópicas. Esta é a idéia de ensemble, e corresponde ao W, número de configurações possíveis de um sistema, considerado por Boltzmann. Desse modo, Gibbs observou que se wr indica o volume ocupado por nr partículas, o volume total nesse espaço, que corresponde a uma particular distribuição das partículas constituintes desse gás, será dado por:
Examinando essa expressão, Gibbs percebeu que havia necessidade de discriminar entre gases consistindo de partículas idênticas. Assim, no livro referido acima, colocou a seguinte questão:Se duas fases diferem somente pelo fato de partículas similares haverem trocado de lugar umas com as outras, elas devem ser consideradas como indistinguíveis ou apenas em fases diferentes? Se as partículas são consideradas como indistinguíveis, então, de acordo com o espírito do método estatístico, as fases devem ser consideradas como idênticas. Essa pergunta ficou conhecida como o famoso Paradoxo Termodinâmico de Gibbs, conforme nos conta Cyril Domb no livro intitulado Twentieth Century Physics, Volume I [Laurie M. Brown, Abraham Pais and Sir Brian Pippard (Editores), Institute of Physics Publishing and American Institute of Physics Press, 1995], enunciado da seguinte maneira:
Sejam dois fluidos colocados em dois recipientes separados por uma barreira. Se os dois fluidos são idênticos e a barreira é removida, não haverá mudança na entropia; se não são idênticos haverá mudança na entropia.
A solução desse paradoxo, qual seja, como distinguir esses dois casos, só foi dada com a introdução da Mecânica Estatística Quântica. Com efeito, em 1924, os físicos, o indiano Satyendra Nath Bose (1894-1974) (Zeitschrift für Physik 26, p. 178) e o germano-norte-americano Albert Einstein (1879-1955; PNF, 1921) (Preussische Akademie der Wissenschaften zu Berlin, Mathematisch-Physikalische Klasse, Sitzungsberichte, p. 261) mostraram que, para partículas indistinguíveis sem limite de número para ocupar qualquer nível de energia, a expressão acima proposta por Gibbs deve ser substituída por (com gi substituindo wi):

Por outro lado, em 1926, os físicos, o italiano Enrico Fermi (1901-1954; PNF, 1938) (Zeitschrift für Physik 26, p. 178) e o inglês Paul Maurice Adrien Dirac (1902-1984; PNF, 1933) (Proceedings of the Royal Society of London A112, p. 661), observaram que a expressão acima deveria ser modificada para tratar o caso de partículas indistinguíveis, em que duas delas não podem ocupar o mesmo nível de energia:

Desse modo, as partículas indistinguíveis são tratadas por esses dois tipos de Estatística e hoje elas são chamadas, respectivamente, de bósons e de férmions.